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Abstract

I. A number of approaches have recently been proposed for the parallel execution

of logic programming languages, but most of them deal with either or-parallelism

or and-parallelism but not both. This paper describes a high-level design for effi-

ciently supporting both and- parallelism and or- parallelism. -Our approach is based

on the 'binding arrays' method for or-parallelismn and the 'RAP' method for and-

parallelism. Extensions to the binding-arrays method are proposed in order to

achieve constant access-time to variables in the presence of and- parallelism. The

RAP (Restricted And-Parallelism) method becomes simplified because backtrack-

ing is unnecessary in the presence of or-parallelism. -Odr approach has the added

effect of eliminating redundant computations when goals exhibit both and- and or-

parallelism. The paper first briefly describes the basic issues in pure and-parallelism

and or-parallelism, states desirable criteria for their implementation (with respect

to variable access, task creation and switching), and then describes the combined

and-or implementation._

t This research is supported by grant DCR-8603609 from the National Science

Foundation and contract N 00014-86-K-0680 from the Office of Naval Research.



1. Introduction

Logic programming [K74] has attracted great interest recently because of its

applicability in symbolic computation, parsing, intelligent databases, and expert

systems. From the standpoint of implementation, an important characteristic of

logic programming languages is that they are amenable to highly parallel execu-

tion, because they disallow destructive assignments and explicit sequencing. Con-

ery identifies two important forms of parallelism in logic programming languages:

or-parallelism and and-parallelism [CK81]. Or-parallelism arises when a goal can

be matched with multiple rules and these multiple paths can be pursued in parallel.

And-parallelism arises when multiple goals can be executed in parallel. However,

realizing or- and and-parallelism in an actual implementation poses significant chal-

lenges: to realize or-parallelism, we must efficiently represent and access the mul-

tiple bindings for variables [W87]; and to realize and-parallelism, we must avoid a

time-consuming dependency analysis to ensure that goals are independent of one

another [D85]. This paper is concerned with strategies and techniques for the par-

allel implementation of logic languages, with the goal of efficiently realizing both

and-parallelism and or-parallelism.

A number of approaches have already been proposed for the parallel execution

of logic programming languages, but the bulk of current research has dealt with

either or-parallelism [BL86, CH86, C87, DLO87, HCH87, JG86, L84, SW87, TL87,

W84, W87] or and-parallelism [CK83, D84, D87, H86, HN86, LKL86]. Our ex-

perience with practical logic programs suggests that both forms of parallelism do

arise naturally, although most programs tend to exhibit predominately one form of

parallelism. In this paper we devise a framework for the combined and-or parallel

execution of logic languages. Our approach builds upon the best known techniques

for exploiting or-parallelism and and-parallelism: the 'binding arrays' method for

or-parallelism [W84, W87] and the 'RAP' method for and-parallelism [D84, HN86].

Essentially, our approach extends the pure or-parallel inipleIentation by providing ?or _

for the sharing of results across (independent) and-parallel computations. The ap-I

proach has the following properties: (i) variables are accessed i,1 constant-time, (ii)

task creation is also constant-time, (iii) redundant computation is avoided when

goals exhibit both and- and or-parallelism, (iv) and-parallel goals need not be
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restarted upon backtracking as in pure and-parallel systems (because there is no

backtracking in our approach), and (v) early pruning of failing and-parallel goals is

possible (as in intelligent backtracking). Our approach has one potential disadvan-

tage: task-switching time is not constant. To minimize this overhead, we propose

to adopt a fairly high task-granularity. We assume a shared-memory MIMD model

in which all processors can access all memories in constant-time.

The rest of this paper is organized as follows: section 2 describes the major

issues in or-parallelism, states desirable criteria for an or-parallel implementation,

and then describes the binding-arrays method; section 3 similarly describes the

issues and criteria for and-parallelism, and provides a brief description of the re-

stricted and-parallelism method; section 4 describes the combined and-or parallel

implementation; and finally, section 5 presents conclusions and further comments

on related work.

2. Or Parallelism

Or-parallelism manifests itself whenever there is a non-deterministic search for so-

lutions. In logic programs, or-parallelism arises when multiple clause heads unify

with a goal. The subgoals arising from these multiple matches can be executed in

parallel. The following very simple example illustrates the basic idea.

father(adam, cain).
father(adam, abel).
mother(eve, cain).
mother(eve, abel).

parent(X, Y) father(X, Y).
parent(X, Y) mother(X, Y).

Given the above logic program, the goal

? parent(P, C)

can match both clause heads for parent, and the subgoals father(P, C) and

mother(P, C) can be executed in or-parallel fashion. Typically, or-parallel execu-

tion is initiated by creating a separate task corresponding to each successful match,

and executing the tasks in parallel. Thus, all parent-child pairs can be computed

simultaneously. Figure 1 shows the goal tree for the above goal; we refer to this
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tree as the or-parallel tree. Each node of the tree records the local variables of the

clause that unified with the parent goal of this node.

?- parent(P, S).

father( XY). 7 mother( X, Y).

[father(adam, cain). father(adam, abel). mother(eve, cain). mother(eve, abel).

Figure 1. A Pure Or-parallel Tree.

2.1. Criteria for Or-parallel Implementations

The above example illustrates one of the basic requirements of an or-parallel imple-

mentation: it must be able to represent multiple bindings for certain variables, e.g.,

P and C. This is in sharp contrast with sequential implementations of Prolog, such

as described in [WPP771, where multiple solutions are explored one at a time, using

a trail stack to record variables like P and C that need to be reset upon backtracking.

In general, all unbound variables appearing in the argument terms of a goal could

potentially obtain multiple bindings during or-parallel execution. D.H.D. Warren

refers to such variables as conditional variables [WS7].

In addition to representing multiple bindings, an efficient implementation must

ensure that the access time to such conditional variables and the task-creation time

needed is not prohibitive; ideally, they should be a constant independent of the size
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of the goal tree and independent of the size of the arguments of a goal. Because

the number of bindings for a conditional variable cannot be predcted in advance

(because it depends on the number of solutions to the goal), nor is it immediately

obvious which of the multiple bindings is applicable to some descendent task , the

representation of the multiple bindings roust cater to constant access time. Task

creation should not, for example, traverse arguments of a goal to determine which

variables are unbound; nor should it copy bindings for all variables on the path fromn

the root of the goal tree to the node creating the new task. Although the different

or-parallel paths are logically independent, they can (and should) share the bindings

for all bound variables in the path from the root to any common ancestor of two

or-parallel nodes.

A further requirement on or-parallel implementations arises from the finite na-

ture of the underlying parallel machine. Because it is very likely that the number of

or-parallel tasks will exceed the number of available processors-a valid assumption

for commercially available parallel machines-the task switching time should also

not be prohibitive, and ideally a constant independent of the goal tree. We make

the assumption that the underlying machine provides constant access-time to all

memory locations-an assumption that is valid only for shared-memory multipro-

cessors. We can thus sum up the criteria for an ideal or-parallel implementation as

follows:

1. constant access time to all variables;

2. constant task-creation time; and

3. constant task-switch time.

Other desirable characteristics of an ideal or-parallel implementation are that it

should execute as efficiently as a sequential implementation in case only one pro-

cessor is available. Also, it should be amenable to optimizations that apply to

sequential implementations, such as last-call optimization and environment trimi-

ming.

2.2. The Binding Arrays method

A number of approaches to or-parallel implementation of logic programs have re-
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cently been proposed:

1. Hashing windows [184];

2. OR-parallel token machine [CH86];

3. Variable importation [L84];

4. Time-stamping [TL87];

5. Version-vectors [HCH87];

6. Environment-closing [C87];

7. Favored-bindings [DLO87, SW87];

8. Binding Arrays [W84, W87].

We do not attempt a description of all these approches in this report. Reference

[W87] provides a comparison of some of these approaches. In our opinion, no method

achieves all the criteria mentioned earlier; D.H.D. Warren [W871 argues that there

is no clearly superior technique either. Below we describe briefly the binding-arrays

method of D.S. Warren (W84], as enhanced by D.H.D. Warren [W871, because it

performs as well as the best methods, and has the further property that it can be

adapted for a combined and-or parallel implementation, to be described in section

4.

In this method, each node of the goal tree contains the local variables of the

clause that successfully unified with the parent subgoal, and also a binding list.

When a node binds a conditional variable in one of its ancestor nodes, it stores an

<a, v> pair in its binding list, where a is the address of the conditional variable

in the ancestor node, and v is a pointer to the assigned value. Thus, all variables

whose addresses would have been trailed in a sequential implementation end up on

the binding list. The binding list is needed to perform task-switching, explained

further below. To make access to conditional variables a constant-time operation,

each processor has an array called the binding array, which is initially empty, but

gets updated dynamically as explained below.

Task Creation. All local variables of a node that are unbound at the time

it creates one or more or-parallel subgoals are assigned consecutive indices in the

binding array. A counter is maintained with each node for this purpose, and is

initially zero in the root node. The new value of the counter is then copied into the
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nodes for each of the subgoals created-to be used when these nodes in turn create

new goals. The processor that was executing the parent node picks up one of the

goals, allocates a new node for it (with space for the local variables of the matching

clause), and starts executing it. Processors that pick up other or-parallel subgoals

need only allocate a new node, since the numbering of the unbound variables is

done only once. Allocating a node is a constant time operation because its size is

known at compile-time.

Variable Access. When a node attempts to bind a conditional variable at

address a to value v, a pair < a, v > is stored in the binding list of the node, and

a pointer to the value v is stored in the binding array at the position i indicated at

address a. Thus binding a variable to a value is a constant-time operation. Accessing

the value of a bound conditional variable is also a constant-time operation. Two

accesses are required: first, to fetch the index i stored in the conditional variable,

and then to fetch the value stored in the binding array at index 1.

Task-Switching. When a processor switches from one leaf node n, to an

unexplored leaf node 722, it must construct a new binding array. It does this by

making unbound, in its original binding array, all conditional variables that lie

from the common ancestor of these two leaf nodes to 721, and adds on all bindings

in the binding lists of the nodes from the common ancestor to n 2. Thus, task-

switching is not constant-time, and it is desirable not to switch to a very distant

node in the tree. Such a scheme was recently proposed by D.H.D. Warren [WS7]j.

Hie also suggests a processor scheduling policy that minimizes the number of task

switches. Thus, idle processors keep moving around the or-parallel tree looking

for work. When they find an unexplored branch they pick it up; no other node is

explored until the entire sub-tree rooted at the current node is explored.

The binding-arrays method is attractive because it performs the mlost fre-

qjuently occurring operation, viz., variable access, very efficiently (conlstant- time).

The next most frequent operation, task creation, is alsodone efficiently (constant-

time). Although task-switching is also not constant-time, its cost can be minimized

by switching less frequently or switching to places that are "nearer" in the goal tree.

Other properties of this method are that, if there is only one processor available, a

7



depth-first search would perform comparably to a sequential implemeneation, and

it supports standard sequential optimizations.

3. And Parallelism

We now describe the problems of realizing and-parallelism, state desirable criteria

to be satisfied by an ideal solution, and then describe the restricted and-parallelism

method in some detail, as we will use it as a basis for our combined and-or imple-

mentation, described in section 4.

First, note that or-parallelism will not arise if at most one clause matches a

goal at each step-such computations are said to be deterministic. Many problems,

however, do lend themselves naturally to a deterministic formulation. Parallelism in

such formulations comes in two common forms: divide-and-conquer parallelism and

producer-consumer parallelism. In this report, we shall be concerned mainly with

and-parallelism arising from divide-and-conquer formulations. In logic programs,

this form of and-parallelism arises when multiple subgoals are independent of one

another.

We illustrate and-parallelism in logic programs with a simple example. Con-

sider the two clauses for the quick-sort algorithm.

qsort([], [).
qsort([PIL], Sorted)

partition(P, L, Left, Right),

qsort(Left, S),
qsort(Right, S2),

append(S1, [PIS21, Sorted).

Here, the two subgoals qsort(Left, SI) and qsort(Right, S2) can be executed

in and-parallel fashion, so that the two partitioned sublists of the input list are

sorted simultaneously. Because the algorithm is recursive, and-parallelism similarly

occurs at each recursive step. As in or-parallelism, a task is created for each and-

parallel subgoal.

3.1 Criteria for And-parallel Implementations

Note that it is not advantageous to execute the partition subgoal in parallel with

the two qsort subgoals, because the latter two depend on the former for their
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input data. Similarly, the append subgoal depends upon its preceding two qsort

subgoals for its input, and is best executed after they complete. While it is in theory

possible to execute such "dependent" subgoals in parallel, doing so frequently results

in considerable wasteful computation. In the above example, if the two qsort goals

were attempted in parallel with the partition subgoal, they would end up exploring

an infinite goal tree (because their first argument is unbound). Restricting their

attention to a given list in their first argument narrows the search space down

drastically. Thus, our first criteria is that an and-parallel implementation should

avoid wasteful computation.

How we can determine which goals are independent of one another? Three

different approaches to this problem have been proposed: (1) by requiring explicit

annotations from the programmer indicating which are "input" variables and which

are "output" variables [CG86]; (2) by monitoring the status for variables (bound or

unbound), and dynamically re-structuring tasks to obtain optimal and-parallelism

(CS5]; and (3) by monitoring the status for terms (ground or nonground) and using

a static task-structure, conditioned upon the status of terms, to obtain less-than-

optimal (i.e., restricted) and-parallelism [D84]. Approach (1) differs from (2) and

(3) in that the programmer has to explicitly specify the dependencies, using anno-

tations. We do not further consider this approach here, because we are interested

in automatic detection of and-parallelism. While a naive approach would traverse

arguments of subgoals to determine if they are ground or not, clearly a desirable

solution is one that avoids such a time-consuming run-time analysis. Thus, the time

taken for detecting subgoal independence should be independent of the size of their

respective arguments.

Unlike or-parallel implementations, a pure and-parallel implementation must

be able to backtrack upon failure. To understand the problem, consider the sub-

goals shown below, where ';' is used between sequential subgoals-because of data

dependencies-and '11' for parallel subgoals (no data dependencies).

a; b; (c 11 d 1 e); g h

Assume that all subgoals can unify with more than one rule. A number of cases arise

depending upon which subgoal fails. If subgoal a or b fails, sequential backtracking



occurs, as usual. Because c, d, and e are mutually independent, if either CIne of them

fails, backtracking must proceed to b-but see further below. If g fails, backtracking

must proceed to the right-most choice point within the parallel subgoals c 11 d 11 e.

and re-compute all goals to the right of this choice point. If e were the rightmost

choice point and c should subsequently fail, backtracking would proceed to d, and. if

necessary, to c. Thus, backtracking within a set of and-parallel subgoals occurs only

if initiated by a failure from outside these goals, i.e., "from the right". If initiated

from within, backtracking proceeds outside all these goals, i.e., "to the left". This

latter behavior is a form of "intelligent" backtracking.

To sum up, the following criteria should be satisfied by an ideal and-parallel

implementation:

1. avoid wasteful over-computation;

2. avoid complex run-time dependency analysis; and

3. support intelligent backtracking.

As with or-parallel implementations, it is desirable that an and-parallel implemen-

tation perform comparably with a sequential implementation in the single-processor

case and support standard sequential optimizations.

3.2 The Restricted And-Parallel method

The following methods for and-parallel execution of logic programs have been pro-

posed.

1. Conery's abstract parallel implementation model fCS5J;

2. Improvements of Conery's and-parallel model [L1KL86, WCS6]; and

3. Restricted And-Parallel model, introduced by DeGroot [DS4], and further

refined by Hermenegildo and Nasr [HNSG].

Of these, the last method comes closest to realizing the criteria mentioned in the

previous subsection; hence, we discuss it in some detail below.

Program representation. Program clauses are compiled into Conditional

Graph Expressions (CGE). A CGE is of the form

(condition, goal1 , goal 2 ,... goal.),

10



meaning that, if condition is true, goals goal, ... goal,, are to be evaluated in

parallel, otherwise they are to be evaluated sequentially. The condition can be

either ground(v1 ,... ,v, 1 ), which checks whether all of the variables v1,.... v,, are

bound to ground terms or indepcndent(v,.. ., v,,), which checks whether the set

of variables reachable from each of v1 ... v,, are mutually exclusive of one anothcr.

Checking for ground and in7dependence involve very simple runtime tests, details

of which are presented in [D84]. Essentially, a type tag (ground, nonground, or

variable) is maintained with each term, and unification synthesizes new type tags

from existing type tags. The method is conservative in that it may type a term as

nonground even when it is ground-another reason why the method is regarded as
"restricted". For example, the clause

f(X,Y) :-p(X), q(Y), s(X,Y), t(Y)

might be compiled into:

f(X,Y) :- (ground(X, Y),

(independent(X, Y), p(X), q(Y)),

(ground(Y), s(X, Y), t(Y))).

And-parallel execution. During forward execution, a Choice-point Marker

(CM) is placed at each choice point-a choice point is created for only a sequential

goal-and a Parallel-call Marker (PM) at each CGE that evaluates to true, i.e., each

CGE that can actually be executed in parallel. Each PM is marked as "inside" when

it is created, and the parallel resolution of the CGE subgoais is triggered. Finally.

the PM mode is changed to "outside" when all subgoals report success.

When failure occurs, the most recently created marker (PM\ or CM) is found.

If the marker is a CM, sequential backtracking occurs. If the marker is a PM and its

value is "inside", all goals inside the CGE are killed, and backtracking is recursively

performed. If it is a PM and its value is "outside", backtracking occurs within the

CGE, right to left, until another solution is found. If no subgoal is found to suceed

in this manner, failure propagates outside the CGE.

This model has an efficient implementation, because it can take advantage of

WAM compiler technology to achieve standard sequential implementation optimiza-

tions, and can also efficiently accomplish a limited form of intelligent backtracking.

1.1



Further details of this approach may be obtained from [HN86].

4. Combined And-Or Parallelism

The obvious reason for combining and-parallelism and or-parallelism in a single

framework is that any implementation that caters to either alone is suboptimal

compared with one that caters to both. But there are other benefits too, as we

will describe in the next subsection. Our approach is to combine the binding-arrays

model for or-parallelism and the RAP model for and-parallelism. Thus programs

are compiled into CGEs before execution. Before we present our design, we first

briefly describe the main problems to be solved and then state desirable criteria.

4.1 Criteria for And-Or Parallel Implementations

Because a given logic program tends to exhibit predominately one form of paral-

lelism, the combined model should perform as well as the pure models in these

cases. Hence we adopt the union of the criteria for pure or-parallel and pure an(d-

parallel implementations: constant variable-access, task-creation and task-switch

times (pure or-parallel case); and avoidance of wasteful computation and efficient

(leternlination of subgoal independence (pure and-parallel case). Note that a com-

bined model does not have to support any backtracking, unlike a pure and-parallel

model, because of the presence of or-parallelism. The realization of and-parallelism

is simplified in this respect; it suffices to detect subgoal independence and initiate

their forward execution.

When there is potential for both and- and or-parallelism in a single program, ex-

ploiting either form of parallelism alone can lead to unnecessary over-computation.

For example, assuming the usual definition for the append predicate, the pair of

goals

? append(X, Y, [1,...,M]), append(P, Q, [1,...,n])

leads to a m*n computational cost under a pure or-parallel or pure and-parallel

implementation (and also a sequential implementation), because all n solutions for

P and Q are re-computed for each of the m solutions for X and Y. Since these two

goals are independent, it should theoretically be possible to execute them only

once, and somehow represent the cross product of their solutions. This way the
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computational cost would only be of the order m + n. To achieve this result. the

goal tree of the pure models clearly needs to be generalized to an and-or graph,

so that sharing can be represented. For the above example, the successful leaf

nodes in the or-parallel trees for the two subgoals append(X, Y, [1, ... m] ) and

append(P, Q, [1, .... n]) should be linked together to reflect the construction of

the cross-product of solutions. In general, given a set of k and-parallel goals, gI, ...,

gk, each of which having ni, ..., nk solutions respectively, it is desirable to achieve

computational time and space much less than n, * ... * nk.

When dealing with both and- and or-parallelism, the binding-arrays method

for the pure or-parallel case must be extended to achieve constant-time access to

variables. To see the problem, consider the goals (p ; (ql i1 q2); r), where q1 and q2

also exhibit or-parallelism, and suppose that goal p has been completed. In order

execute goals q1 and q2 in and-parallel, it is necessary to maintain separate binding

arrays for them. As a result, the binding-array offsets for any conditional variables

that come into existence within these two goals will overlap. Thus, when goal r is

attempted, we are faced with problem of merging the binding-arrays for q1 and q2

into one composite binding-array or maintaining fragmented binding-arrays.

Finally, we should expect an and-or parallel implementation to produce solu-

tions at least as fast as (if not much faster than) a sequential implementation. This

implies that preference should be given to and-parallel tasks over or-parallel tasks

if there are more tasks than available processors.

To sum up, the criteria for a combined and-or parallel implementation are

essentially the union of the criteria for pure or-parallel and pure and-parallel im-

plementations. In addition, it is desirable to avoid over-computation when both

and-parallelism and or-parallelism arise within a set of goals, and also favor and-

parallelism over or-parallelism if there are limited processors.

4.2 Combined And-Or Implementation

We first describe the basic structure and construction of the and-or graph, then de-

scribe how the binding-arrays method can be extended to provide constant variable-

access time, and finally consider task creation and switching.
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4.2.1 And-Or Graph Representation

As a motivation for our proposed representation, consider a set of k and-parallel

goals, g1, ... , gk, each having nl, ..., nk solutions respectively in their pure or-parallel

trec--the more general case is described in the next paragraph. The solution leaves

in the or-parallel tree of each adjacent pair of and-parallel goals are linked together

using n, * nj directed links. (Note that the total number of links is O(k * n2 ) rather

than O(nk), assuming all ni are equal.) The structure describing the result of these

k and-parallel goals is now a graph, rooted at an and-node. The solution leaves of

g, are referred to as solution-origin nodes and the solution leaves of gk are referred

to as solution-end nodes.

To see the more general case, suppose that the above k and-parallel goals

occurred as the body of some clause C, and that clause C was invoked by goal

ai, which occurs amidst and-parallel goals (a, 1 1 ... 11 a,,). Suppose further that

the and-or graphs of each ai have been constructed, and we now wish to construct

the graph for the result. All we need to do is to link the solution-end nodes of

ai- 1 with the solution-origin nodes of ai, and the solution-end nodes of ai with the

solution-origin nodes of ai+l. The solution-origin nodes of the result are those of

a,; similarly, the solution-end nodes of the result are those of a,.

To combine the solutions of k or-parallel goals, we take the disjoint union of

their respective solution-origin and solution-end nodes. To execute a goal gk+l

sequentially after a goal gk, we root its and-or graph below each solution-end node

of gj-.

Example. Figure 2 illustrates this construction for a simple example-we do

not consider how variable bindings are represented here; this is discussed in the

next subsection. Note that there are two kinds of nodes, and-nodes (bold-face)

and or-nodes, and three kinds of directed edges, and-arcs (bold-face), or-arcs, and

solution-links (curved). The top-level node is an or-node. Associated with each

node is a goal-list. All and-nodes have just a single subgoal-the one for which the

node was created. The goal-list for an or-node consists of any remaining subgoals

of its parent appended to any subgoals in the body of the matching clause that

created the or-node.
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We briefly explain below how the graph of figure 2 would have been constructed.

First, because subgoal 'a' in the top-level node cannot be executed in and-parallel

with any other subgoal, it is initially explored in pure or-parallel fashion. Assuming

it unifies with both clauses for 'a', the goal-lists of the or-nodes labelled a1 and a 2

are just the remaining subgoals in their parent node, because the clauses for 'a' are

unit clauses. The or-node a1 then executes the subgoals b and c in and-parallel

by creating and-nodes for them, initialized with the goals b and c respectively.

Execution similarly continues at and-nodes b and c until the nodes b', b2 , e1 , e2 ,

f1 and f2 are finally created.

The solution-links shown in figure 2 represent the connections between solution-

end nodes and solution-origin nodes. For example, the solution-end nodes of the

and-node b are bl and b2 , and these are linked to the solution-origin nodes of c

shown in the figure, namely el and e2 . Finally, because goal d is to be executed

sequentially after the goals (b 11 c), we root its and-or graph below each solution

end-node of c, namely, fV and Va . Because goal d could depend upon both goals b

and c for the bindings of its variables, it is necessary to construct as many and-or

graphs for d as there are solutions in the cross-product of b and c.

We defer until section 4.2.3 the details of how concurrently executing pro-

cessors perform solution-linking. The reader may verify that there is one-to-one

correspondence between each path in an or-parallel tree and each path in the corre-

sponding and-or graph starting from the root node, proceeding via solution-origin

and solution-end nodes, and ending on a solution-end node of the root.

4.2.2 Binding Arrays

We now explain our proposed extension to the binding-arrays method in order to

accomodate and-parallelism.

Suppose that an or-node is about to create two or more and-nodes and there are

processors available to execute them in and-parallel. For each such and-node, the

assignment of offsets is re-started from 0 by simply resetting the counter associated

with the and-node. This resetting is not needed for the left-most and-node because

it could be picked up by the processor executing the parent or-node. We will refer

to and-nodes where the offsets are reset to 0 as offset-origin nodes. For each such
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node, the pair < a, n > is stored in a cache local to the processor, where a is the

address of the offset-origin node and n is the index of the next free location in the

processor's binding array. Every node records the address, a, of its offset-origin

and-node.

When a reference to a conditional variable v occurs, we calculate its offset in

the binding array in two steps: first, we present the address a of the offset-origin

and-node for v to the cache and obtain the value ri; then we access the binding

array at offset (n + i), where i is the offset stored with v. Note that access to

variables is still constant-time, though the constant is somewhat larger compared

to the binding-arrays method for pure or-parallelism.

4.2.3 Task Creation and Switching

There are two sources of work for the processors: unexplored or-nodes and unex-

plored and-nodes. If there are insufficient processors to explore all nodes, and-nodes

are given preference over or-nodes. Thus, if processors pi and P2 are exploring re-

spectively two sibling and-nodes (f 1 g), and pi has completed one or-parallel path

arising from f, it will not explore other or-parallel paths rooted at f until all other

and-parallel goals have been explored. If there are insufficient processors to explore

all and-nodes, only one of the many possible or-parallel paths will be explored at

any and-node. Thus, if there is one processor, pl, available to execute the and-

parallel goals (f 11 g) and pi has completed one or-parallel path arising from f, it will

explore an or-parallel path rooted at g before returning to other or-parallel paths

in f.

Task-creation is a constant-time operation because it is performed identical

to the pure or-parallel model. Task-switching to a node on a different or-parallel

path is also identical to the pure or-parallel model (and is not constant-time). Task-

switching to a node on a different and-parallel path requires more work, as solutions

must be linked. Each and-node therefore maintains a set of solution-origin addresses

and a set of solution-end addresses. A leaf node's address is included in the set of

solution-origin addresses of the closest ancestor and-node (solution-origin owner)

that has a left sibling; similarly, the leaf node's address is included in the set of

solution-end addresses of the closest ancestor and-node (solution-end owner) that
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has a right sibling. For example, in figure 2, leaf node e2 will be included in the set

of solution-origin addresses maintained by c and the set of solution-end addie ses

maintained by e.

When a processor finishes executing an or-parallel path it adds the address

of the leaf node into the appropriate solution-origin and solution-end sets. If the

leaf node is not a solution-origin node of the entire goal tree, the processor links

to it each node referred to in the set of solution-end addresses of the left sibling

of its solution-origin owner. Similarly, if the leaf node is not a solution-end node

of the entire goal tree, the processor links it to each node referred to in the set of

solution-origin addresses of the right sibling of its solution-end owner.

When a processor completes execution at some leaf node and looks for more

work, it should delete the < a, n > pair from its cache for each offset-origin and-

node a that is no longer applicable. Also, when a processor located at a solution-end

node e links to a solution-origin node o, it loads its binding array from the binding

lists of all nodes in the path from node c up to the common ancestor of o and e.

During this process, the processor also records the < a, 7 > pairs in its cache for

all offset-origin nodes found. Clearly this is not constant-time, but this is in lieu of

having to re-compute the possibly multiple solutions of the sibling and-node. Thus,

in the example in figure 2, when a processor links the solution-end node b' to the

solution-origin node e1 it will have to make an entry for nodes c and e into its cache.

This is to ensure that descendent nodes of V or f' can access variables in c.

5. Conclusions and Related Work

The combined and-or model presented in this paper preserves the characteristics of

the binding-arrays method for pure or-parallelism and the RAP method for pure

and-parallelism, namely, constant-time variable access, constant-time task-creation,

efficient dependency checking of subgoals, and restricted intelligent backtracking.

Additionally, there is no restarting of and-parallel goals reqaired as in the RAP,

and the computation of and-parallel subgoals are shared across different solution

paths, resulting in better time and space performance. Standard optimizations,

such as last-call and environment trimming, still apply, though the conditions under

which they can be applied would slightly change due to the sharing of nodes. Fur-
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thermore, if there is only one processor available, the execution would be as efficient

as a sequential implementation, with the added advantages of limited intelligent

backtracking, no redundant computations and no restarting of and-parallel goals.

The one main shortcoming of this approach is the high cost of task switching--a

shortcoming inherited from the binding-arrays method-but we propose to keep the

task granularity high, so as to keep this overhead at a minimum.

To the best our knowledge, very few research projects have aimed at realizing

both and- and or-parallelism in a single implementation:

1. Conery's And-Or Process Model [C81].

2. PEPSys model from ECRC [WR87].

3. Wise's Epilog [W86].

Conery's and-or model generates an or-process for each clause matched and

an and-process for each subgoal which can be executed in and-parallel. The model

constructs a run-time data-flow graph to detect potentially independent subgoals.

While the model detects maximal parallelism, its overheads are high because of the

need to reconstruct the data-flow graph after every successful subgoal and the need

to pass answer-substitutions back and forth by message-passing. Also, there could

be unnecessry over-computation when both and-parallelism and or-parallelism exist

in a set of goals.

The PEPSys model uses the technique of time-stamping to dereferencc the

correct value of a variable. Locating a conditional variable appears to be a non-

constant-time operation. The model requires the user to annotate programs with

special operators to exploit and-parallelism. A join is used to obtain all the solutions

of two and-parallel subgoals. This approach could be wasteful because not all joins

may be necessary to report a top-level solution. This also requires synchronization

when bindings of one and-parallel subgoal has been computed before the other.

We think that traversing different paths to obtain different. solutions is a more

efficient approach than formning all possible joins. The model may result in over-

computation, like Conery's model, when both and-parallelism and or-parallelism

exist in a set of goals. The advantage of the PEPSys model is, however, that

it is not tied down to a fixed aichitecture and can be implemented on shared or
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nlon-shared menory nultiprocessors.

Wise's Epilog is based upon or-parallelisn and uirestricte d aid-paralleli ,:.

As explained earlicr, unrestricted and-parallelism could often leading to wasteful

computation; besides, the back-unification necessary to maintain (onsistency 1 i;A1

extra overhead. Wise's model may also over-compute when !,oth aiid-piarallelisiii

and or-parallelism exist in a set of goals.

We are in the process of further refining our ligh-level defiuiti,,n of the co'ul

bined and-or parallel implementation, and expect to devel(o) a simulator (,f this

model before constructing an actual parallel implementation.
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